## Re-assembling Hetch Hetchy

Water Supply Implications of Removing O'Shaughnessy Dam



Sarah Null senull@ucdavis.edu Geography Graduate Group UC Davis Jay Lund jrlund@ucdavis.edu
Civil & Environmental Engineering
UC Davis

#### Questions

- If O'Shaughnessy Dam were removed, could existing water storage facilities supply the Hetch Hetchy System's service area with water?
- Would additional scarcity occur in other urban, agricultural, or environmental water demand areas in the region without O'Shaughnessy Dam?
- What hydropower revenues would be lost from removing O'Shaughnessy Dam?
- What water quality costs would be incurred from removing O'Shaughnessy Dam?

## The Hetch Hetchy System



# Reasons to restore Hetch Hetchy Valley



Hetch Hetchy Valley, 1908

- Water is scarce, but Yosemite Valley is also a scarce resource.
  - Restoring Hetch Hetchy Valley could open an area equal to Yosemite Valley to wildlife and recreation.
- Recreation and tourism benefits may exceed water storage and hydropower benefits of the reservoir.
- Ethical and aesthetic reasons should a reservoir for San Francisco be in Yosemite National Park?

## O'Shaughnessy Dam

- A Hetch Hetchy System component.
- About 25% of SFPUC's storage in the Hetch Hetchy System, 14% of storage on the Tuolumne River.
- Provides no conveyance to San Francisco water users.
- Operated primarily for water supply and hydropower production.
  - Cherry and Eleanor storage operate solely for hydropower in most years.



#### **Filtration Avoidance**

- Currently, water from O'Shaughnessy Dam has filtration avoidance status.
  - This means the water is very pure and meets water quality standards.
  - Minimal water treatment needed (such as chlorine or chloramine as a disinfectant).
  - Very few systems in the US qualify for filtration avoidance.

### Reservoir Capacities

#### in the Hetch Hetchy System

| Hetch Hetchy System Storage                                                                            |                |  |  |  |
|--------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| Reservoir                                                                                              | Capacity (taf) |  |  |  |
| O'Shaughnessy*                                                                                         | 360            |  |  |  |
| Lake Eleanor                                                                                           | 28             |  |  |  |
| Cherry Lake                                                                                            | 268            |  |  |  |
| New Don Pedro                                                                                          | 570**          |  |  |  |
| San Antonio                                                                                            | 50             |  |  |  |
| Calaveras                                                                                              | 97             |  |  |  |
| Lower Crystal Springs                                                                                  | 58             |  |  |  |
| Pilarcitos                                                                                             | 3              |  |  |  |
| San Andreas                                                                                            | 19             |  |  |  |
| Total HH System Storage                                                                                | 1,454          |  |  |  |
| Other Tuolumne River Storage                                                                           |                |  |  |  |
| New Don Pedro (MID & TID)                                                                              | 1,460          |  |  |  |
| Total Basin Storage                                                                                    |                |  |  |  |
| All Reservoirs                                                                                         | 2,914          |  |  |  |
| * Filtration Avoidance Permit                                                                          |                |  |  |  |
| **Space owned by the city and county of San Francisco Total Storage in New Don Pedro Reservoir = 2,030 |                |  |  |  |

## CALVIN: an economicengineering optimization model

- Minimizes economic costs within constraints
  - Economic value functions for agricultural and urban uses
  - Operating costs: hydropower, water treatment, pumping, groundwater recharge
  - Flow constraints for environmental uses
- Prescribes operation over a 72-year historic hydrology
- Surface and groundwater systems
- Major hydropower facilities
- Year 2020 projected demands and infrastructure
- Hypothetical inter-tie links New Don Pedro Reservoir with Hetch Hetchy Aqueduct.

CALVIN's Spatial Coverage Over 1,200 spatial elements 51 Surface reservoirs 28 Ground water reservoirs 600+ Conveyance Links 88% of irrigated acreage 92% of population Reservairs Graundwater\_Centraids Power plants lg demand Natincluded in CALVIN Upper Sacramento Valley Lower Sacramento Valley and Bay Deita San Joaquin and South Bay Sauthern California

## Management Options

- Surface reservoir operations
- Groundwater reservoir operations
- Water allocation (markets & exchanges)
- Urban conservation/use efficiencies
- Cropping changes and fallowing
- Agricultural water use efficiencies
- New technologies
  - Wastewater reuse
  - Seawater desalination

### Hetch Hetchy System Schematic



#### **Model Limitations**

- Ignores political and institutional constraints
- No flood control or recreational benefits, but current flood storage rules are respected
- Simplified costs, water quality, hydrology
- Operates reservoirs aggressively with perfect foresight

#### **Model runs**

|                                                          | Keep Filtration Avoidance                 | Lose Filtration Avoidance |
|----------------------------------------------------------|-------------------------------------------|---------------------------|
| Retain O'Shaughnessy Dam                                 | 2020<br>Base Case                         | 2020                      |
| Remove O'Shaughnessy Dam and add New Don Pedro inter-tie | Scenario modeled, produced no new results | 2020                      |

- Model runs optimize South Bay / San Joaquin River area and include:
  - 13 surface water reservoirs, 5 GW basins, 7 major hydropower facilities
  - 6 urban demand regions, 4 agriculture regions
  - 2 wildlife refuges, minimum instream flows on 3 river reaches
- A hypothetical inter-tie links New Don Pedro and the Hetch Hetchy Aqueduct (for runs without O'Shaughnessy Dam).
- The base case run is constrained to current operating policies, all other runs are unconstrained.

## Hetch Hetchy System Water Storage with and without O'Shaughnessy Dam



# Hetch Hetchy Aqueduct upstream of New Don Pedro





Oct 1921 - Oct 1993

-With O'Shaughnessy Dam ----- Without O'Shaughnessy Dam

#### **Hetch Hetchy Aqueduct Flows**



Seasonal Flow in Hetch Hetchy Aqueduct upstream of New Don Pedro



Flow through New Don Pedro Inter-tie

### **Water Scarcity**

- No scarcity to urban areas.
- No scarcity to environmental demands.
- Small increase in scarcity to TID and MID (CVPM 11 & 12) without O'Shaughnessy Dam.
- No scarcity to other agricultural demands.



|                               | With O'Shaughnessy | Without           |
|-------------------------------|--------------------|-------------------|
|                               | Dam                | O'Shaughnessy Dam |
| Average annual scarcity (taf) | 0.85               | 1.42              |
| Max annual scarcity (taf)     | 29.3               | 72.5              |
| % years with scarcity         | 0.04               | 0.03              |
| Average annual demand (taf)   | 5259               | 5259              |
| Average annual delivery (taf) | 5258               | 5257              |

## Hetch Hetchy System Hydropower Generation



Average annual difference = 457 GWhr/yr Average annual cost difference = \$11,107,050

#### **Water Treatment Changes**

- Removing O'Shaughnessy Dam would prompt loss of regulatory filtration avoidance status, raising water treatment costs.
  - Construction costs, about \$1-2 billion (\$50-100 million/yr).
  - O&M costs, about \$6 million/year.
- Filtration avoidance makes
   O'Shaughnessy Dam very valuable.
- Water quality would remain high.

### **Major Conclusions**

- Removing O'Shaughnessy Dam need not substantially increase water scarcity.
  - Capture of considerable runoff could be possible at the damsite for much of most years
  - No effects outside the Tuolumne basin, if New Don Pedro Reservoir is connected directly with the Hetch Hetchy Aqueduct.
- Conveyance can sometimes substitute for water storage. (Intertie between New Don Pedro Reservoir and Hetch Hetchy Aqueduct)
- Loss of filtration avoidance, would be very costly.
- Removing O'Shaughnessy Dam reduces hydropower generation and revenues.
- Optimization modeling helps identify promising re-operations for water resource systems potentially undergoing restoration.

#### **Contact Information**

Sarah Null
senull@ucdavis.edu
Doctoral Student
UC Davis
Geography Graduate Group

Jay Lund
jrlund@ucdavis.edu
Professor
UC Davis
Civil & Environmental Engineering

#### Thesis available online:

http://cee.engr.ucdavis.edu/faculty/lund/students/SarahNullThesis.pdf

Partially funded by the UC Davis John Muir Institute for the Environment

#### Year 2100 Model Runs

- How would the Hetch Hetchy System respond to much, much higher demand?
- Will removing O'Shaughnessy Dam lead to increasing problems in the future?
- Historical hydrology
- Network changes:
  - San Francisco and Santa Clara Valley demand regions were given unlimited access to seawater desalination at \$1000/af
  - Urban wastewater recycling made available for up to 50% of return flows, also \$1000/af
  - O&M water treatment costs were increased to represent the loss of filtration avoidance by the year 2100

## **Average Annual Storage at O'Shaughnessy Dam with Year 2020 Demand and Year 2100**



## **Average 2100 Deliveries, Scarcity, and Scarcity Cost**

| Urban Regions                  | With<br>O'Shaughnessy Dam | Without O'Shaughnessy<br>Dam |  |
|--------------------------------|---------------------------|------------------------------|--|
| Average Deliveries (taf/yr)    | 1,948                     | 1,948                        |  |
| Average Scarcity (taf/yr)      | 6                         | 6                            |  |
| Average Scarcity Cost (\$K/yr) | 4,086                     | 4,076                        |  |
| Agricultural Regions           |                           |                              |  |
| Average Deliveries (taf/yr)    | 4,506                     | 4,509                        |  |
| Average Scarcity (taf/yr)      | 753                       | 749                          |  |
| Average Scarcity Cost (\$K/yr) | 75,466                    | 74,754                       |  |

## Average Annual Hetch Hetchy System Hydropower Generation with year 2100 Demand



Average annual cost difference of ~ \$9.5 million Average annual energy difference of ~ 378 GWhr

#### Conclusions

- 1) In year 2100, scarcity to agricultural regions is extensive. Removing O'Shaughnessy Dam does not increase urban or agricultural water scarcity.
- 2) There is a surplus of surface storage, but not enough water. Storage is not water.
- 3) Water is not stored over-season, it is quickly used to meet demand.
- 4) Water storage increases in groundwater basins.
- 5) The lower Hetch Hetchy Aqueduct remains at capacity regardless of the existence of O'Shaughnessy Dam (assuming a NDP inter-tie).
- 6) Substantial hydropower remains despite lower reservoir levels.
- 7) For 2100, an inter-tie with New Don Pedro Reservoir is more valuable than O'Shaughnessy Dam

# Annual Average Urban Deliveries, Scarcity, and Scarcity Cost

| Demand Area   | Location                                                                    | Base Case with | With          | Without          |
|---------------|-----------------------------------------------------------------------------|----------------|---------------|------------------|
|               |                                                                             | O'Shaughnessy* | O'Shaughnessy | O'Shaughnessy ** |
|               | Annual Average Urban<br>Deliveries (taf/yr)                                 | 1,424          | 1440          | 1440             |
| SFPUC         | City and County of San Francisco,<br>San Mateo County                       | 232            | 238           | 238              |
| SCV           | Santa Clara Valley, Alameda<br>County and Alameda Zone 7 Water<br>Districts | 646            | 656           | 656              |
| CVPM 10 Urban | Madera, Merced, San Joaquin, and Stanislaus Counties                        | 42             | 42            | 42               |
| CVPM 11 Urban | San Joaquin and Stanislaus<br>Counties                                      | 232            | 232           | 232              |
| CVPM 12 Urban | Merced and Stanislaus Counties                                              | 109            | 109           | 109              |
| CVPM 13 Urban | Madera and Merced Counties                                                  | 162            | 162           | 162              |
|               | Total Urban Scarcity (taf/yr)                                               | 16             | 0             | 0                |
|               | Total Urban Scarcity Cost (\$1,000/yr)                                      | 15,290         | 0             | 0                |

<sup>\*</sup> Constrained to current operating policies

<sup>\*\*</sup> Results do not change with loss of filtration avoidance

# Annual Average Ag. Deliveries, Scarcity, and Scarcity Cost

| Demand Area | Location                                                                                 | Base Case with | With          | Without         |
|-------------|------------------------------------------------------------------------------------------|----------------|---------------|-----------------|
|             |                                                                                          | O'Shaughnessy* | O'Shaughnessy | O'Shaughnessy** |
|             | Annual Average Ag. Deliveries (taf/yr)                                                   | 5259           | 5258          | 5257            |
| CVPM 10     | Valley Floor west of San Joaquin R.                                                      | 1698           | 1698          | 1698            |
| CVPM 11     | Eastern San Joaquin Valley above Tuolumne R.                                             | 867            | 866           | 866             |
| CVPM 12     | Eastern Valley Floor between San Joaquin R. and Tuolumne R.                              | 803            | 803           | 802             |
| CVPM 13     | Eastern Valley Floor between San Joaquin R. and Merced R.                                | 1891           | 1891          | 1891            |
|             | Annual Average Ag. Scarcity (taf/yr)                                                     | 0              | 1             | 1.5             |
| CVPM 10     | Valley Floor west of San Joaquin R.                                                      | 0              | 0             | 0               |
| CVPM 11     | Eastern San Joaquin Valley above Tuolumne R. Eastern Valley Floor between San Joaquin R. | 0              | <1            | <1              |
| CVPM 12     | and Tuomune R.  Eastern Valley Floor between San Joaquin R.                              | 0              | 0             | <1              |
| CVPM 13     | and Merced R.                                                                            | 0              | 0             | 0               |
|             | Annual Average Scarcity Cost (\$1000/yr)                                                 | 0              | 5             | 11              |
| CVPM 10     | Valley Floor west of San Joaquin R.                                                      | 0              | 0             | 0               |
| CVPM 11     | Eastern San Joaquin Valley above Tuolumne R. Eastern Valley Floor between San Joaquin R. | 0              | 5             | 6               |
| CVPM 12     | and Tuomune R. Eastern Valley Floor between San Joaquin R.                               | 0              | 0             | 5               |
| CVPM 13     | and Merced R.                                                                            | 0              | 0             | 0               |

<sup>\*</sup> Constrained to current operating policies

<sup>\*\*</sup> Results do not change with loss of filtration avoidance